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1 Introduction

The Banados-Teitelboim-Zanelli (BTZ) black hole [1, 2] is a very useful laboratory for

exploring aspects of black holes and geometry in a simplified setting, as the geometry is

simply an orbifold of AdS3. In particular, if we consider an AdS3 × S3 solution in string

theory supported by NS-NS fluxes, the spectrum of perturbative string theory on the BTZ

black hole can easily be determined using standard orbifold techniques. This problem has

been extensively investigated for non-extremal BTZ black holes, which are orbifolds of

AdS3 along a hyperbolic generator [3–8]. The twisted sector states for the orbifold are

obtained using a parafermionic representation of the current algebra and a twist operator

construction which are based on earlier work on the long string sectors of global AdS3 [9] and

closely related to the work on the elliptic orbifold in [10]. The extremal black holes, which

are orbifolds along a parabolic generator, are less studied (although the winding sectors

were considered in [11], where the relevance of the hyperbolic Wakimoto representation of

the currents used in [4] was recognized). Since the extremal cases are a different class of

orbifolds from the non-extremal cases, they will require separate consideration. From the

worldsheet point of view, the parafermionic representation used in the non-extremal case

are no longer appropriate, and we need to find a new representation of the vertex operators

which diagonalises the angular momentum in the extremal BTZ black hole.
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This paper addresses this problem, finding an explicit set of vertex operators for the

untwisted and twisted sectors for the bosonic string on the zero-mass and extremal ro-

tating BTZ black holes. We consider an AdS3 × S3 geometry supported by NS-NS flux,

corresponding to an F1-NS5 system compactified on a Ricci-flat internal manifold. The

world-sheet theory is a CFT with an ̂SL(2,R)k × ŜU(2)k current algebra, with the level

k being set by the NS-NS flux. We will discuss the bosonic string in detail; the problem

of extending our analysis to the superstring will be discussed at the end. We want to

work in a parabolic basis for SL(2,R), which diagonalises the combination of generators

corresponding to the momentum along the compact circle in zero-mass BTZ. Here we show

that the hyperbolic Wakimoto representation introduced in [4], provides an appropriate

representation of the ̂SL(2,R)k current algebra. This representation has the advantage

that the expression for the vertex operators is more explicit than in the parafermionic

representation used in the non-extremal case.

We apply this calculation of the spectrum to study the tachyons in this background.

Tachyons in the non-extremal non-rotating BTZ black hole were studied in [8], as an explicit

example of the kind of quasi-localised closed string tachyons discussed in [12].1 The idea

is that if we consider string theory compactified on a circle, when the size of the circle is

smaller than the string length ℓs, there are tachyonic winding modes. If the size of this

circle varies over some base space, one heuristically expects a tachyon which is confined to

the region where the size of the circle ≤ ℓs. It was found in [8] that there is a tachyon in

the twisted sector NS-NS ground state if the size of the circle at the black hole horizon is

smaller than the string scale,
√
kr+ ≤ ℓs. However, this tachyon is found not to be localised

in the near-horizon region, due to the coupling to the NS-NS field. As the zero-mass BTZ

black hole is the limit as r+ → 0, we would expect that in this case, the NS-NS ground

state in twisted sectors should always be tachyonic, and using the explicit representation

of the spectrum we obtain, that is indeed what we find. We also extend the analysis to the

rotating case, showing that tachyons arise in the twisted sectors if
√
kr+ ≤ 2ℓs, as in the

previous discussion of the non-rotating non-extremal case. The study of tachyons in the

M = 0 BTZ black hole has a couple of advantages over the previous non-extremal case.

Firstly, the expressions for the vertex operators in the Wakimoto representation are more

explicit than the parafermionic representation used in the previous case. Secondly, the

geometry has a causal Killing vector everywhere, so issues of tachyon condensation could

be addressed in the M = 0 BTZ black hole without having to deal with the complications

of studying the behaviour on a time-dependent background geometry in the region behind

the horizon. We will not address the question of the condensation of the tachyon, which

remains a challenging direction for future work.

In section 2, we review aspects of the M = 0 BTZ black hole. In section 3, we introduce

the hyperbolic Wakimoto representation of the current algebra, and use it to construct ver-

tex operators for the untwisted sector states. We then introduce a twist operator enforcing

the orbifold condition, and use it to obtain the twisted sector vertex operators. We discuss

1As BTZ arises as the near-horizon limit of a charged black string, it is directly related to the examples

discussed in [13, 14]. Other examples with a quasi-localised tachyon include [15, 16].
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the condition for a tachyon to exist in the spectrum, and argue that the NS-NS ground

states in the twisted sector are tachyonic, as expected. In section 4, we discuss the flat

space limit, taking k → ∞ while focusing on the neighbourhood of the singularity. In this

limit, the zero mass BTZ black hole reduces to the null orbifold of flat space [17, 18].

In section 5, we extend the analysis to the extremal rotating BTZ black hole. We show

that the relevant orbifold action is chiral, with the action on left-movers the same as for the

zero-mass black hole while the action on right-movers is the same as for the non-zero mass

black hole. We can thus construct appropriate vertex operators by combining the previous

results for these two cases. We show that the resulting set of vertex operators for twisted

sectors is mutually local, and argue that a tachyon appears when
√
kr+ ≤ 2ℓs, as expected.

In section 6, we discuss the extension of our results to the superstring. The main

open problem is to find a representation of the spin fields which diagonalises the action

of the spacetime angular momentum. Without such a representation, we cannot explicitly

construct vertex operators corresponding to the modes which survive the orbifold projection

in the NS-R and R-R sectors. The final section summarises the paper and considers possible

routes for further investigation.

2 AdS3 worldsheet theory

Bosonic string theory on AdS3 is described by the SL(2,R) WZW model with action

SWZW =
k

8πα′

∫

d2σTr(g−1∂agg
−1∂ag) +

ik

12π

∫

Tr(g−1dg ∧ g−1dg ∧ g−1dg), (2.1)

where g is the SL(2,R) group element, k is the level, and the second integral runs over a

three-dimensional manifold whose boundary is the two-dimensional worldsheet (see e.g. [19]

for a nice discussion of strings on AdS3). Henceforth we will set α′ = 1, so we work in units

of the string length. The AdS length scale is then ℓ =
√
k. The WZW model is invariant

under the action

g(z, z̄) → ω(z)g(z, z̄)ω̄(z̄)−1, (2.2)

which leads to a set of conserved world-sheet currents,

J (z) = Jaτ
a = −k

2
∂gg−1, J̄ (z̄) = J̄aτ

a = −k
2
g−1∂̄g, (2.3)

where the generators of SL(2,R) are given by

τ1 =
i

2
σ3 =

1

2

(

i 0

0 −i

)

,

τ2 =
i

2
σ1 =

1

2

(

0 i

i 0

)

,

τ3 =
1

2
σ2 =

1

2

(

0 −i
i 0

)

. (2.4)

These satisfy the algebra

[τa, τ b] = iǫab
cτ

c, (2.5)

– 3 –



J
H
E
P
0
4
(
2
0
0
9
)
1
3
4

where ǫ123 = 1, and the index is lowered with the metric ηab = diag(1, 1,−1). It will

later be convenient to introduce the combinations τ± = τ3 ± τ2. Note that this choice of

notation doesn’t correspond to the usual conventions for raising and lowering operators:

we have the commutation relations [τ1, τ+] = −iτ+, [τ1, τ−] = iτ−, [τ+, τ−] = 2iτ1.

Using the Ward identity

iδA(w, w̄) =

∮

w

dz

2πi
ǫaJ aA(w, w̄) +

∮

w

dz̄

2πi
ǭaJ̄ aA(w, w̄) (2.6)

we can find the OPEs for the currents. They are

J bJ c =
iǫbcaJ a

z − w
+

k
2η

bc

(z − w)2
, J̄ bJ̄ c = − iǫ

bc
aJ̄ a

z̄ − w̄
+

k
2η

bc

(z̄ − w̄)2
, (2.7)

where ǫabc is the totally antisymmetric tensor, with ǫ123 = 1, and ηab is the metric defined

by ηab = diag(1, 1,−1). There is a relative minus sign between the OPEs for the left and

the right moving currents, as noted in [10]. This minus sign can be fixed using a relabelling

process, setting Ja = J a, J̄1 = J̄ 1, J̄3 = J̄ 3, J̄2 = −J̄ 2. The OPEs for both the left and

right moving sectors are then identical for the new currents,

JbJc =
iǫbcaJ

a

z − w
+

k
2η

bc

(z − w)2
, J̄bJ̄c =

iǫbcaJ̄
a

z̄ − w̄
+

k
2η

bc

(z̄ − w̄)2
. (2.8)

Assuming the currents have trivial monodromies, they will have a mode expansion

Ja =
∑

nǫZ

z−n−1Ja
n J̄a =

∑

nǫZ

z̄−n−1J̄a
n . (2.9)

The commutation relations for these modes are then

[

Ja
n, J

b
m

]

= iǫab
cJ

c
m+n +

k

2
nηabδm+n,0, (2.10)

and similarly for the J̄a. In particular the zero modes form an SL(2,R) × SL(2,R) subal-

gebra, corresponding to the spacetime isometries.

2.1 Zero mass black hole

The M = 0 BTZ black hole corresponds to writing the space in Poincaré coordinates and

making an identification. In these coordinates the SL(2,R) group element is

g =

(

1
z

(t+x)
z

(x−t)
z

(x2+z2−t2)
z

)

, (2.11)

so the metric is

ds2 =
k

z2

(

−dt2 + dz2 + dx2
)

(2.12)

and the NSNS 2-form field is

B =
k

z2
dt ∧ dx. (2.13)
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In Poincaré coordinates, the currents are

J1 = −ik
[

(∂x+ ∂t)
(x− t)

z2
+
∂z

z

]

, (2.14)

J2 = ik

[

−(x− t)

z
∂z +

(∂x− ∂t)

2
+

(∂x+ ∂t)

2z2
(2tx+ 1 − x2 − t2)

]

, (2.15)

J3 = −ik
[

−(x− t)

z
∂z +

(∂x− ∂t)

2
+

(∂x+ ∂t)

2z2
(2tx− 1 − x2 − t2)

]

, (2.16)

and

J̄1 = −ik
[

(∂̄x− ∂̄t)
(x+ t)

z2
+
∂̄z

z

]

, (2.17)

J̄2 = −ik
[

−(x+ t)

z
∂̄z +

(∂̄x+ ∂̄t)

2
+

(∂̄x− ∂̄t)

2z2
(−2tx+ 1 − x2 − t2)

]

, (2.18)

J̄3 = ik

[

−(x+ t)

z
∂̄z +

(∂̄x+ ∂̄t)

2
+

(∂̄x− ∂̄t)

2z2
(−2tx− 1 − x2 − t2)

]

. (2.19)

To relate the spacetime energy and momentum to these currents, we consider in-

finitesimal time and space translations. For the time-translation, the infinitesimal

transformation is

δ(t)g ≡ iǫ(t)(z)g − igǭ(t)(z̄) =
∂g

∂t
δt, (2.20)

where

iǫ(t)(z) =

(

0 0

−1 0

)

δt, iǭ(t)(z̄) =

(

0 −1

0 0

)

δt. (2.21)

Thus, in terms of the SL(2,R) generators (2.4),

ǫ(t)(z) = (τ2 + τ3)δt ≡ τ+δt, ǭ(t)(z̄) = (τ2 − τ3)δt ≡ −τ−δt. (2.22)

A similar calculation can be performed for the infinitesimal transformations in the x-

direction, δ(x)g. Using the Ward identity (2.6) and substituting in ǫ and ǭ, it can then be

seen that

Qt =
(

J +
0 + J̄−

0

)

, Qx =
(

−J+
0 + J̄ −

0

)

. (2.23)

In terms of the modified currents, the charges are then

Qt =
(

J+
0 + J̄+

0

)

, Qx = −
(

J+
0 − J̄+

0

)

. (2.24)

We obtain the M = 0 BTZ black hole by making periodic identifications along the ∂x

direction. The period of the identification can be changed by rescaling x, so it is not a

physical parameter. For convenience, we choose x ∼ x+2π. Invariance under this orbifold

restricts states to have a quantised value of Qx,

(

J+
0 − J̄+

0

)

∈ Z. (2.25)

We therefore need to work in a parabolic basis for SL(2,R), which diagonalises J+
0 . In

the next section, we will use a Wakimoto representation for these currents to implement

this constraint.

– 5 –
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3 Vertex operators on zero mass black hole

In this section, we construct vertex operators for the untwisted and twisted sector states

of the bosonic string on the M = 0 BTZ black hole.

To implement the constraint (2.25), it is crucial to have a set of vertex operators which

diagonalise the action of J+
0 . It is therefore useful to have a representation of the current

algebra where J+ is as simple as possible. In the case of non-extreme BTZ black hole

in [8], we needed a representation which diagonalised J2, and we could simply introduce

a free boson representing the current J2, writing the remainder of the vertex operator in

terms of a parafermion. Since the current J+ is null, a simple free boson representation

will not be possible. However, it turns out that the hyperbolic Wakimoto representation

of the ̂SL(2,R) current algebra introduced in [4] provides a simple representation for J+

(the relevance of this representation for the M = 0 BTZ black hole was previously noted

in [11]). The Wakimoto representation constructs the conserved currents in terms of a free

boson φ and anticommuting β − γ bosonic ghosts:

iJ+(z) = β(z), (3.1)

iJ−(z) = γ2β +
√

2k′γ∂φ(z) + k∂γ(z), (3.2)

iJ1(z) = −γβ(z) −
√

k′

2
∂φ(z), (3.3)

where k′ ≡ k − 2, and the OPEs for β,γ and φ are

β(z)γ(w) = −γ(z)β(w) ∼ 1

z − w
, (3.4)

φ(z)φ(w) ∼ − ln (z − w). (3.5)

This leads to the required OPEs for the conserved currents,

J+(z)J−(w) ∼ −k
(z − w)2

+
2iJ1(w)

z − w
(3.6)

J1(z)J±(w) ∼ ∓iJ±(w)

z − w
(3.7)

J1(z)J1(w) ∼
k
2

(z − w)2
(3.8)

Unlike in the non-zero mass BTZ black hole case, this is an explicit representation of the full

current algebra. We introduce an identical representation for the antiholomorphic currents

J̄a, in terms of β̄(z̄), γ̄(z̄), φ̄(z̄).

3.1 Untwisted sector vertex operators

We want to take a basis of vertex operators which diagonalise J+
0 . A vertex operator V

has J+
0 eigenvalue λ if J+V (z) = λV (z)

z−w . Using (3.4), this implies that

V (z) = eiλγf(β, φ). (3.9)

– 6 –
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For AdS3, the ̂SL(2,R) current algebra is a spectrum generating algebra, and the spectrum

contains short string states in highest weight representations of the current algebra: the

continuous representations Ĉα
j ×Ĉα

j for j = 1
2 + is which correspond to spacetime tachyons,

and the discrete representations D̂±
j × D̂±

j for 1
2 < j < k−1

2 . The spectrum in global AdS3

also contains long string states, but these do not survive the orbifold projection, being

replaced instead by the twisted sector states. Diagonalising J+
0 corresponds to considering

the representations of SL(2,R) in a parabolic basis. For both the continuous and discrete

representations of the current algebra, in this parabolic representation, the eigenvalue λ

can take all real values.

Since these are highest weight representations of the current algebra, we can focus

on the chiral primary operators; other vertex operators will be obtained as descendents.

Requiring that (3.9) be a chiral primary operator implies that f(β, φ) is independent of β,

as V would otherwise have too singular an OPE with J−. Including the anti-holomorphic

sector, we can therefore take a basis of chiral primary vertex operators in the untwisted

sector of the form

Vjλλ̄(z, z̄) = e
iλγ−

q

2

k′
jφ
e
iλ̄γ̄−

q

2

k′
jφ̄
. (3.10)

To implement the orbifold, we need to quantise the eigenvalue of J+
0 − J̄+

0 , that is, we need

λ− λ̄ ∈ Z. (3.11)

In the next subsection, we will see how this quantisation condition can be implemented

using a twist operator. This will also allow us to construct vertex operators for the twisted

sector modes.

The energy momentum tensor for the WZW model is

T =
1

k − 2
ηab : JaJb :, (3.12)

which can be rewritten in in terms of J+ and J− as

T =
1

(k − 2)
:

(

J1J1 − 1

2
J+J− − 1

2
J−J+

)

: . (3.13)

Working in the Wakimoto representation,

T = β∂γ − ∂2φ√
2k′

− (∂φ)2

2
. (3.14)

The conformal dimensions of the vertex operators (3.10) are then

h = h̄ =
−j(j − 1)

(k − 2)
. (3.15)

Thus, the label j on the vertex operators corresponds to the label on representations of

the current algebra.

– 7 –
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3.2 Twist operator

So far, we have just described the vertex operators describing strings on AdS3 in a basis

which is adapted to working in Poincaré coordinates. To describe the M = 0 BTZ black

hole, we would now like to impose the quantisation condition (2.25). Following the same

route as in the analysis of the non-extremal BTZ black hole [8], we would like to impose this

condition by requiring mutual locality of the untwisted sector vertex operators (3.10) with

an appropriate twist operator. The twisted sector vertex operators will then be obtained

by closure of the OPE including the twist operator.

To do this we have to change our representation again and bosonize the β − γ system

as in [4],

β = ∂φ+, (3.16)

γ = φ−, (3.17)

where

φ± =
1√
2
(φ0 ± φ1), (3.18)

φi(z)φj(w) ∼− ηij ln(z − w), ηij =diag(−1, 1). (3.19)

We introduce a similar bosonization for β̄, γ̄. In this representation, the untwisted sector

chiral primary fields become

Vjλλ̄(z, z̄) = e
iλφ−−

q

2

k′
jφ
e
iλ̄φ̄−−

q

2

k′
jφ̄
. (3.20)

This representation was used to discuss strings on AdS3 in Poincaré coordinates in [20].

It was noted there that there are potential logarithmic branch cuts associated with the

definition of the boson φ+. We will now see (as also noted in [11]) that these branch

cuts are correctly interpreted as reflecting winding around the x direction, describing the

twisted sectors in the string on the M = 0 BTZ black hole.

The appropriate twist operators are

tn = ein(φ++φ̄+). (3.21)

This will impose the correct quantisation condition, as

tn(z)Vjλλ̄(w) ∼
exp

(

inφ+ + iλφ− −
√

2
k′ jφ

)

(z −w)nλ

exp
(

inφ̄+ + iλ̄φ̄− −
√

2
k′ jφ̄

)

(z̄ − w̄)nλ̄
, (3.22)

so the OPE will only be mutually local for λ− λ̄ ∈ Z.

We can also read off the twisted sector vertex operators from this OPE, obtaining

Vjnλλ̄ = exp

(

inφ+ + iλφ− −
√

2

k′
jφ

)

exp

(

inφ̄+ + iλ̄φ̄− −
√

2

k′
jφ̄

)

. (3.23)

– 8 –
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Note that the current algebra generators J−, J2 will have non-trivial monodromies around

a twisted sector vertex operator because of the dependence on φ+, reflecting the twisting.

The conformal dimensions for these twisted sector operators are

h = −j(j − 1)

k′
− nλ, h̄ = −j(j − 1)

k′
− nλ̄. (3.24)

The level-matching condition h− h̄ ∈ Z is satisfied as a consequence of the quantisation of

the charge Qx in (3.11). Comparing this to the spectrum obtained for the twisted sectors

of the non-extreme BTZ black hole in [8], we see that the spectrum there reduces to this

one in the limit r+ → 0, as expected, with r+λthere = −λhere, r+λ̄there = λ̄here. The full

vertex operators involve taking descendents of these chiral primary operators, and include

a contribution from the internal CFT. The physical state conditions will then be

− j(j − 1)

k′
− nλ+ hint +N = −j(j − 1)

k′
− nλ̄+ h̄int + N̄ = 1, (3.25)

where hint, h̄int are the dimensions of the operator from the internal CFT, and N, N̄ are

oscillator numbers for the current algebra. We assume that the internal CFT is unitary, so

hint, h̄int ≥ 0.

This is one of the main results of our paper: by adopting this bosonised version of

the Wakimoto representation for the currents, we see that we can give completely explicit

expressions for the vertex operators for the full spectrum of string states on the M=0 BTZ

black hole, including twisted sector states. In [11], this representation of the currents was

also used to construct the Virasoro generators associated with the asymptotic isometries

of the spacetime in terms of the worldsheet currents. This makes it possible to study the

relation of the worldsheet theory to the dual CFT in AdS/CFT, as was done for global

AdS3 in [21, 22].

3.3 Tachyons in twisted sectors

As we are working with the bosonic string, we know there is a tachyonic ground state in

the untwisted sectors. We would like to see if there is a tachyon in the twisted sectors. In

the extension to the supersymmetric case, the expectation is that there will be a choice of

GSO projection which eliminates the ground state in the untwisted sectors but retains it

in the odd twisted sectors (corresponding to choosing an antiperiodic spin structure on the

orbifold circle in spacetime). Given the appearance of a tachyon in twisted sectors for the

non-extreme BTZ black hole with
√
kr+ < 2 [8], we would expect that there will be one

here as well.

We need to consider carefully the definition of a tachyon. Classically, a spacetime

field is tachyonic if it has normalisable solutions which grow exponentially in time. It is

difficult to look directly for modes which grow exponentially in time from the worldsheet

point of view, as this would require complex λ, λ̄, which makes it difficult to see how we

can satisfy the physical state condition h = h̄ = 1 in the twisted sectors. We will therefore

look instead for modes with zero energy; if a spacetime field has a normalisable solution of

zero energy, it should generically also have solutions which grow exponentially in time, by
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continuity.2 Since the x direction is spacelike everywhere in the M = 0 BTZ black hole, it

is physically reasonable to further restrict to modes which also have zero momentum along

x; these should be the most tachyonic modes for a field with a given mass-squared. Thus,

it suffices for us to consider modes with λ = λ̄ = 0.

Thus, we are looking for normalisable modes with λ = λ̄ = 0, satisfying the physical

state condition. In this case, the physical state condition for the twisted sectors is identical

to that in the corresponding untwisted sector, and the twisted sector states will satisfy

the physical state condition whenever the corresponding untwisted sector states do. In

particular, there are physical states obtained by spectral flow from the tachyon in the

untwisted sector, which have j(j − 1) < 0.

The remaining condition is normalisability. In the untwisted sector, we know that we

have the usual bosonic string tachyon, which has normalisable solutions with λ = λ̄ = 0.

The twist operator is expressed in terms of the Wakimoto representation, and not in terms

of the spacetime coordinates, so it is not possible to rigorously relate the normalisability

of twisted sector modes to the corresponding untwisted sector ones, but we expect that at

least for large k, the twisting will not significantly modify the dependence on the radial

coordinate, so twisted sector modes will be normalisable if the corresponding untwisted

sector mode is. Thus, we expect that the λ = λ̄ = 0 vertex operators in twisted sectors

obtained from the tachyon in the untwisted sector will be normalisable, and hence give

modes of a tachyon in the twisted sectors.

As in [8], these modes have roughly the same radial behaviour as for the untwisted

sector tachyon, so they are not well-localised in the neighbourhood of the horizon. The

twisted sector states are essentially long string states, which can propagate to the asymp-

totic boundary of the M = 0 BTZ black hole at low cost in energy because of the coupling

the NSNS 2-form field.

The expectation is that while the untwisted sector tachyons are removed by the GSO

projection in the supersymmetric theory, the twisted sector tachyons will remain. We will

comment on this again when we discuss the extension of our work to the superstring later.

4 The null orbifold limit

An important source of intuition and a useful check on the calculations in studying orbifolds

of AdS3 is to consider the limit k → ∞, in which the space becomes flat. For the non-zero

mass BTZ black hole studied in [8], there were two flat space limits of interest, the near

horizon limit which focused on the region near the event horizon, and the Milne limit,

which focused on the singularity. For the M = 0 BTZ black hole the event horizon and the

singularity are at the same point in space, z = ∞ in the coordinates of (2.12). The two

limits are therefore replaced by one, the null orbifold limit. In this section, we consider the

2In a black hole background, modes supported close to the horizon have low energy as a result of the

gravitational redshift, so a non-tachyonic field will have an energy spectrum starting from zero. However,

it will not have a normalisable mode of strictly zero energy, so we believe this condition is still physically

appropriate even in the presence of a black hole horizon.
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behaviour of the untwisted and twisted sector states we constructed above as we take this

limit. This limit is most closely analogous to the Milne limit in [8].

To show that the M = 0 BTZ black hole reduces to the null orbifold as we take k → ∞
focusing on the region near the Poincaré horizon at z = ∞, we need to make a change of

coordinates. If we define new coordinates

y+ =

√
k

z
, y− =

√
k(t+ z), y = x, (4.1)

then the metric (2.12) becomes

ds2 = −(y+)2(dy−)2

k
− 2dy+dy− + (y+)2dy2. (4.2)

Taking the limit k → ∞ for fixed y±, y, the first term vanishes, and we can see that

the metric reduces to the null orbifold of [17, 18], which was analysed in string theory

in [23, 24]. In these coordinates, the null orbifold is simply the identification y ∼ y+2π. The

quantization condition associated with this orbifold identification remains simply λ−λ̄ ∈ Z.

We should also consider the limit for the NSNS 2-form field (2.13). To obtain a finite limit

as k → ∞, we first need to make a gauge transformation to write

B =
k

z2
(dt+ dz) ∧ dx =

(y+)2√
k
dy− ∧ dy, (4.3)

so in this gauge the 2-form vanishes in the limit as k → ∞. The contribution from the

2-form is still important to see that the currents Ja, J̄a are conserved to sub-leading order

as we take the limit, as in [8].

It is also convenient to rewrite the null orbifold in Cartesian coordinates; the relation is

x+ = y+, x− = y− +
1

2
y+y2, x = y+y. (4.4)

In these coordinates, the null orbifold metric is simply flat, but the identification is more

complicated:

(x+, x−, x) ∼ (x+, x− + 2πx+ 2π2x+, x+ 2πx+). (4.5)

Using (2.14) the currents can be calculated in terms of y±, y:

J1 = −i
√
k
(

y+∂y + y∂y+
)

− iy+∂y− + iy−∂y+ − i
(

y+
)2
y∂y +O

(

1√
k

)

, (4.6)

J2 = −i
√
k

(

y+y∂y + ∂y− +
y2∂y+

2
− ∂y+

2

)

+i

(

−(y+)
2
y2∂y

2
+ y+y−∂y +

(y+)
2
∂y

2
− y+y∂y− + y−y∂y+

)

+O

(

1√
k

)

, (4.7)

J3 = i
√
k

(

y+y∂y + ∂y− +
y2∂y+

2
+
∂y+

2

)

−i
(

−(y+)
2
y2∂y

2
+ y+y−∂y − (y+)

2
∂y

2
− y+y∂y− + y−y∂y+

)

+O

(

1√
k

)

. (4.8)
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This can be more simply re-expressed in terms of x±, x:

J1 = −i
√
k∂x− ix+∂x− + ix−∂x+ +O

(

1√
k

)

, (4.9)

J2 = −i
√
k

(

∂x− − ∂x+

2

)

+ i

(

x−∂x− x∂x− +
1

2

(

x+∂x− x∂x+
)

)

+O

(

1√
k

)

, (4.10)

J3 = i
√
k

(

∂x− +
∂x+

2

)

− i

(

x−∂x− x∂x− − 1

2

(

x+∂x− x∂x+
)

)

+O

(

1√
k

)

. (4.11)

We see that in the flat space limit k → ∞, the leading order (O(
√
k)) terms reproduce

the Cartesian translation currents on flat space. As in [8], the subleading parts involve

Lorentz transformations in the flat space limit, and are required to make the total current

conserved to subleading order taking into account the effects of the 2-form field. The same

can be done for the antiholomorphic sector.

We can use this expression for the currents to relate the Wakimoto variables to the

coordinates in this limit,

β = −
√
k∂x+ − (x+∂x− x∂x+), (4.12)

γ =
2√
k
x− +

2

k
xx−, (4.13)

φ = −
√

2

k′

(√
kx+ x+x−

)

. (4.14)

This in turn implies that the bosonised versions of the Wakimoto variables are closely

related to the x±, x coordinates in the flat space limit; to leading order,

φ+ = −
√
kx+, φ− =

2√
k
x−, φ = −

√
2x. (4.15)

By studying the flat space limit of the antiholomorphic currents J̄a, one can similarly

learn that

φ̄+ = −
√
kx̄+, φ̄− = − 2√

k
x̄−, φ̄ =

√
2x̄ (4.16)

to leading order. Note that the factors of 2 in these expressions appear because in units

with α′ = 1, the flat space coordinates have OPEs xµxν ∼ 1
2η

µν ln(z − w).

4.1 States and vertex operators

In the untwisted sector, the states which survive in this flat space limit are those with

λ − λ̄ ∈ Z ∼ O(1) and λ+ λ̄ ∼ O(
√
k) (since we hold y− =

√
k(t + r) fixed in the limit).

To have h ∼ O(1), we need j ∼ O(
√
k), and similarly for the barred quantities. In the

twisted sectors, we still have λ − λ̄ ∈ Z ∼ O(1) and λ + λ̄ ∼ O(
√
k), since the Qx and

Qt eigenvalues are unaffected by twisting. However, in twisted sectors h = − j(j−1)
k−2 − nλ,

so h ∼ O(1) in twisted sectors requires j ∼ O(k3/4) to cancel the
√
k contribution from

λ. This cancellation can be achieved for modes in the continuous representations of the

current algebra if λ > 0, and for modes in the discrete representations of the current

algebra if λ < 0. Thus, both tachyonic and non-tachyonic twisted sector modes survive in
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the flat space limit, but with this curious correlation with the sign of λ. We expect that

the resulting spectrum in the flat space limit should agree with the one obtained in [23].

We note that as in the Milne limit in [8], in general the modes which survive in twisted

sectors in this flat space limit are not the ones which are obtained by twisting from the

untwisted sector states which survive in the limit. This can also be seen by observing that

the twist operator (3.21) becomes, to leading order,

tn = e−n
√

k(x++x̄+), (4.17)

and hence does not have a well-defined flat space limit. Thus, our twist operator construc-

tion does not have a counterpart in the null orbifold.

Despite the failure of the twist operator to survive in the flat space limit, one might

still hope that we could follow our vertex operators in this limit, since we have an

explicit construction of the vertex operators in terms of the Wakimoto representation

and we understand how these Wakimoto fields are related to flat space coordinates in

the limit. Disappointingly, this does not work. If we consider the vertex operator (3.10)

and substitute in the leading order relations between the Wakimoto fields and the

coordinates (4.15), we obtain

Vjλλ̄(z) = e
i 2λ√

k
x−+j 2

√
k

k−2
x
e
−i 2λ̄√

k
x̄−−j 2

√
k

k−2
x̄
. (4.18)

In the limit, let us write 2λ =
√
kE + Px, 2λ̄ =

√
kE − Px, j =

√
km. Then the vertex

operator is to leading order

Vjλλ̄(z) = eiEx−+2mxe−iEx̄−−2mx̄. (4.19)

We see that this expression has lost the dependence on Px, so it degenerates in the flat

space limit. This failure to obtain a good representation of the vertex operators in the

flat space limit is in retrospect not unexpected: the ̂SL(2,R) × ̂SL(2,R) structure we used

in constructing our vertex operators degenerates in this limit. Although the metric and

spectrum smoothly go over to the flat space orbifold in this limit, a new representation of the

vertex operators is necessary. Similarly, when we take the r+ → 0 limit of the non-zero mass

BTZ black hole, the spectrum of [8] reduces to the one we have obtained here for the zero-

mass black hole, but the vertex operators do not have a smooth limit. A new representation

is needed in the limit, reflecting the fact that we are considering a different orbifold.

Thus, while the orbifold we are considering reduces to the null orbifold in the limit

k → ∞, the representation of the vertex operators in terms of Wakimoto fields degenerates

in this limit, so we do not seem to be able to glean new insight into the null orbifold from

our construction.

5 The extremal rotating black hole

We can easily extend this investigation of the zero mass BTZ black hole to study extremal

rotating BTZ black holes, with M = J . Rotating BTZ black holes are orbifolds of AdS3

with an asymmetric action on the worldsheet; as we will see below, the extremal rotating
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black holes correspond to an orbifold where the action on the left-movers is the same as for

the zero mass BTZ black hole, while the action on the right movers is the same as for the

non-zero mass black hole studied in [8]. Thus, by combining our previous results, it is easy

to determine the spectrum in this case as well. The construction of the twisted sectors is

based on an appropriate ansatz, for which we then explicitly check the mutual locality.

The extremal rotating BTZ black hole has the metric

ds2 = k

(

−(r2 − r2+)2

r2
dτ2 +

r2

(r2 − r2+)2
dr2 + r2

(

dφ− r2+
r2
dt

)2
)

, (5.1)

where φ is a periodic coordinate, φ ∼ φ+ 2π. The spacetime is locally AdS3, with period-

icity of φ corresponding to the action of an orbifold. If we write AdS3 in the embedding

coordinates x0, x1, x2, x3 in R2,2 as the hyperboloid −x2
0 −x2

1 +x2
2 +x3

3 = −k2, the orbifold

which gives us the above extremal rotating black hole is along the Killing vector [2]

ξ = r+(J03 + J12) + J01 − J02 − J13 + J23, (5.2)

up to conjugation, where Jab are the Lorentz transformations on R2,2, Jab = ηbcx
c∂a −

ηacx
c∂b. In the coordinate system of (5.1), this Killing vector is ξ = ∂φ.

The extremal rotating BTZ metric is locally AdS3, so it can be related to the Poincaré

coordinate system we used earlier. The coordinate transformation

z = R−1/2er+(φ−t), t+ x = e2r+(φ−t), t− x = −(T + φ), (5.3)

where

R =
1

2r+
(r2 − r2+), T = t− r+

r2 − r2+
, (5.4)

converts the metric (2.12) into the metric (5.1). This corresponds to writing the group

element of SL(2,R) as

g =

(

R
1

2 e−r+(φ−t) R
1

2 er+(φ−t)

(T + φ)R
1

2 e−r+(φ−t) R
1

2 er+(φ−t)
(

T + φ+ 1
R

)

)

. (5.5)

As in section 2.1, we can determine the conserved charge associated with φ translation.

The action of φ translation on the group element is

δ(φ)g =

(

0 0

1 0

)

g + r+g

(

−1 0

0 1

)

, (5.6)

so the conserved charge is

Qφ = −J+
0 + r+J̄

1
0 . (5.7)

Note that this naive expression will apply for the untwisted sectors; for the twisted sectors,

there is the possibility of a total derivative term, which we need to determine.

Thus, we see that the action in terms of SL(2,R) × SL(2,R) is chiral, with the left

moving part looking like that of a massless BTZ black hole we have studied above, while

the right moving part looks like that of the massive BTZ black hole. It is therefore natural
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to choose the parafermionic representation for the right movers, and the Wakimoto repre-

sentation introduced above for the left movers. The parafermionic representation for the

right movers involves writing the currents as

J̄1 = −i
√

k

2
∂X̄, J̄± = ξ̄±e

±
q

2

k
X̄
, (5.8)

where X̄ is a free boson, X̄(z̄)X̄(w̄) ∼ − ln(z̄−w̄), and ξ̄± are parafermions representing the

remaining ̂SL(2,R)k/Û(1) algebra. Thus, the vertex operators in the untwisted sector are

Vjλλ̄(z) = e
iλγ−j

q

2

k′
φ
Ψ̄jλ̄e

−i
q

2

k
λ̄X̄

(5.9)

Where Ψ̄jλ̄ are parafermionic operators with conformal dimension h̄Ψ̄ = − j(j−1)
k′ − λ̄2

k . We

know that these untwisted sector vertex operators are mutually local for the operators

corresponding to modes of fields on AdS. This gives us some information about the OPE

of the parafermionic operators, as the OPE of two such vertex operators will only be

mutually local if

m− 2

k′
jj′ − 2

k
λ̄λ̄′ ∈ Z (5.10)

where m characterises the leading singularity in the OPE of the parafermionic operators,

Ψ̄jλ̄Ψ̄′
j′λ̄′ ∼ O

(z − w)m
. (5.11)

We construct an ansatz for the twisted sector states in this orbifold by combining the

results for the twisted sectors from our earlier analysis of the massive and massless black

holes: that is, we guess that the twisted sector vertex operators are simply the right moving

part of the twisted sector state from the massive black hole, combined with the left moving

part of the twisted sector state from the massless black hole. This gives

Vjλλ̄n(z) = exp

(

inφ+ + iλφ− − j

√

2

k′
φ

)

Ψ̄jλ̄ exp

(

−i
√

k

2

[

λ̄− k

2
nr+

]

X̄

)

(5.12)

The conformal dimensions for this operator are

h = −j(j − 1)

k′
− nλ, h̄ = −j(j − 1)

k′
− λ̄r+n+

kn2r2+
4

. (5.13)

As in section 3.3, we should have a tachyon in the twisted sectors if we can satisfy the

physical state condition for a mode with j(j − 1) < 0 and λ = λ̄ = 0. This requires√
kr+ < 2, as in [8], so there is a tachyon if the size of the spatial circle at the black hole

horizon is small enough. As in section 3.3, this tachyon will not be well localised in the

region near the horizon.

Level matching will require that h− h̄ ∈ Z, which implies

− nλ+ r+nλ̄− kn2r2+
4

∈ Z. (5.14)
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We would like to see this arise as a consequence of the quantisation of angular momentum

imposed by the orbifold. Naively, the generator of translation in φ is (5.7), which would

imply a quantisation condition −λ+r+(λ̄−knr+/2) ∈ Z, which does not agree with (5.14).

Hence, as in [5], we will need to include a total derivative term in the definition of Qφ, so

that in twisted sectors

Qφ = −J+
0 + r+J̄

1
0 +

knr2+
4

, (5.15)

implying a quantization condition

− λ+ r+λ̄− knr2+
4

∈ Z, (5.16)

consistent with (5.14). Note that unlike in non-rotating cases, the quantization condition on

λ, λ̄ depends on the twist n, so the twisted sector states cannot be obtained by considering

the OPE of untwisted sector states with an appropriate twist operator. Such a procedure

would get the quantization condition wrong.

We then need to verify mutual locality of these twisted sector states. To determine

mutual locality consider an OPE between Vjλλ̄n(z) and Vj′λ′λ̄′n′(w). It turns out that the

relevant condition for mutual locality is

m− 2

k′
jj′ − nλ′ − nλ− 2

k

(

λ̄− k

2
nr+

)(

λ̄′ − k

2
n′r+

)

∈ Z. (5.17)

This is satisfied as a consequence of (5.14) and (5.10). Therefore the correct spectrum for

the twisted sector is indeed given by (5.12); this completes the untwisted sector spectrum

to obtain a mutually local set of operators with the appropriate set of twisted sectors,

indexed by a single integer denoting the twist. It would be interesting to see if the modular

invariance of the resulting partition function could be explicitly verified, but this will be

complicated to check, as is generally the case for asymmetric orbifolds, so we will not

attempt to do so explicitly here.

6 Supersymmetry

In this section, we will discuss the extension of our analysis of the spectrum to the

superstring. This analysis is particularly interesting for the M = J extremal rotating

black holes considered here, as these are supersymmetric backgrounds for the superstring.

Also, from the point of view of considering the tachyons, the tachyons in twisted sectors

are most interesting in the superstring, where we expect the GSO projection to eliminate

the tachyon in the untwisted sector. For the supersymmetric choice of spin structure on

spacetime, spacetime supersymmetry implies that there are no tachyons, but if we make

the opposite choice of spin structure, we expect the tachyons in odd twisted sectors to

survive the GSO projection.

Unfortunately, we are not able to construct the spectrum for the superstring explic-

itly. We have not succeeded in extending the nice representation of SL(2,R) in terms of

Wakimoto fields to the superstring, so we have not succeeded even in constructing an ex-

plicit representation for the untwisted sector modes which survive the orbifold projection
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condition. In this section, we will describe the problem, focusing on the case of the M = 0

black hole for simplicity.

We consider Type II String theory on BTZ ×S3 × T4 as described by a ̂SL(2,R)

super-WZW model at level k. The super-current algebra is

Ja = ja − i

k
ǫabcψ

bψc (6.1)

with ψa having the usual OPE structure for a fermion,

ψa(z)ψb(w) ∼ k

2

ηab

(z − w)
(6.2)

ja(z)ψb(w) ∼ 0 (6.3)

The OPEs for the bosonic currents ja are almost identical to the previous section,

while the OPEs for the supercurrent Ja are very similar,

ja(z)jb(w) ∼ k̃

2

ηab

(z − w)2
+ i

ǫab
cj

c

(z − w)
(6.4)

Ja(z)Jb(w) ∼ k

2

ηab

(z − w)2
+ i

ǫab
cJ

c

(z − w)
(6.5)

where k̃ = k + 2. The world-sheet N = 1 super-current is

G(z) =
2

k

(

gabψ
ajb − i

3k
ǫabcψ

aψbψc

)

. (6.6)

For the superstring, the generator of x translations is again (2.23), but where Ja are

now the total currents given in (6.1). We therefore want to find a representation of the

total currents which simplifies the action of J+, and use this representation to write the

untwisted sector vertex operator in a form which diagonalises the action of J+. We can

use a Wakimoto representation as before for the bosonic currents ja, but the fermionic

contribution to Ja is more problematic.

In [8, 10], the fermions were rewritten in terms of a set of bosons HI , I = 1, . . . , 5,

with OPEs

HI(z)HJ(w) = −δIJ ln(z − w), (6.7)

such that the spin fields

Sα = e
i

2
ǫIHI (6.8)

with ǫI = ±1 diagonalise the action of J2 and hence Qφ. In our case, it is J+ which is

relevant, and this involves a combination ψ1(ψ3 + ψ2) ≡ ψ1ψ+. We could formally define

a field H∗ by

∂H∗ = ψ1ψ+, (6.9)

but this will not have the OPE of a free boson, so we cannot use it in constructing the spin

fields in a way analogous to [8, 10]. As a result, we have no simple route to constructing an

appropriate basis of spin fields in this case which diagonalises the action of Qx. We leave

this as an open problem for future work. It is clearly very interesting to try to understand

these simple examples of BPS black holes from the worldsheet perspective, so we hope

further progress will be possible.
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7 Discussion

The main result of this paper is that we have obtained the full spectrum and discussed

the tachyons appearing in this spectrum for the bosonic string on the M = 0 BTZ black

hole and on the extremal rotating M = J black hole. The spectrum on the zero mass

black hole is just the limit of the spectrum obtained for the massive black hole in [8], as

we would expect. However, because the zero mass black hole corresponds to a parabolic

orbifold of AdS3, the description of the states in this case is quite different from that

of [8]. The use of the Wakimoto representation in the M = 0 BTZ black hole enables us

to give a fully explicit description of the vertex operators for states in both untwisted and

twisted sectors. This makes this example a particularly interesting laboratory for further

explorations of worldsheet string theory on these black hole backgrounds; compared to the

parafermionic representation of the vertex operators employed for the massive black hole

in [8], this more explicit representation ought to give us greater control. Unfortunately,

however, this description of the vertex operators appears to degenerate in the flat space

limit, so our understanding of the limit where we zoom in on the region near the singularity

is not significantly improved by the use of this representation.

For the zero mass black hole, we argued that the twisted sector modes obtained from

the bulk tachyon in the untwisted sector are also tachyonic. The analysis of these tachyons

will closely parallel the corresponding analysis in [8], so we have not given much detail in

our discussion of the tachyons. These modes are not localised in the region near the horizon,

as the coupling to the NSNS 2-form field makes a negative contribution to the energy of

the string, allowing it to propagate to large distances. The study of the condensation of

these tachyons would be an interesting direction for further work, but because the tachyon

is not localised, it may be quite challenging.

We extended our work on the zero mass black hole by considering the extremal rotating

black hole, which corresponds to an asymmetric orbifold, with the action on left movers

the same as for the zero mass black hole and the action on right movers the same as for

the massive non-rotating black hole. We were therefore able to construct a proposal for

the spectrum of strings on this background by combining our work on the zero mass black

hole with previous work on the massive black hole.

Finally, we considered the extension to the superstring. For the elliptic or hyperbolic

orbifolds, it was possible to extend the orbifold construction to the superstring by choosing

an appropriate set of spin fields which were eigenfunctions of the momentum along the

compact direction, allowing us to construct superstring vertex operators which satisfy the

appropriate quantisation condition. We were unable to find a corresponding basis for the

parabolic orbifold which gives the M = 0 BTZ black hole; as a result, we cannot con-

struct superstring vertex operators which are well-defined on the orbifold spacetime. This

technical problem appears to be the most important direction for further work: obviously,

the main motivation for interest in the M = 0 and M = J black holes is that they are

supersymmetric solutions in appropriate supergravity theories [25]. Also, the study of the

tachyons in twisted sectors is mainly interesting in the context of the superstring, where we

expect to be able to choose a GSO projection which will project out the untwisted sector
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tachyon but keep the tachyonic modes in odd twisted sectors. Any further progress on these

directions will require an appropriate construction of vertex operators for the superstring.
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